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Marked graphs in 3-space
A marked graph (shortly, MG) is a spatial graph G in R3

which satisfies the following
▶ G is a finite regular graph possibly with 4-valent vertices, say

v1,v2, . . . ,vn.
▶ Each vi is a rigid vertex, i.e., we fix a sufficiently small

rectangular neighborhood Ni ∼= {(x,y) ∈ R2|−1 ≤ x,y ≤ 1},
where vi corresponds to the origin and the edges incident to
vi are represented by x2 = y2.

▶ Each vi has a marker, which is the thickened interval on Ni

given by {(x,0) ∈ R2|− 1
2 ≤ x ≤ 1

2}, i.e., .

Two marked graphs are said to be equivalent if they are
ambient isotopic in R3 with keeping the rectangular
neighborhoods and markers.
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Oriented marked graphs
An orientation of a marked graph G is a choice of an
orientation for each edge of G in such a way that every
vertex in G looks like ⌞

⌝
⌜

⌟
or ⌝

⌞
⌟

⌜
.

A marked graph is said to be orientable if it admits an
orientation. Otherwise, it is said to be non-orientable.
An oriented marked graph means an orientable marked
graph with a fixed orientation.

> >
>>

>
>> >

In this talk, an unoriented marked graph means a
non-orientable marked graph or an orientable marked graph
without a fixed orientation.
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Marked graph diagrams
An unoriented/oriented marked graph G in R3 can be
described as usual by a diagram D in R2, which is an
unoriented/oriented link diagram in R2 possibly with some
marked 4-valent vertices.

>
>> >

Two unoriented/oriented MG diagrams in R2 represent
equivalent unoriented/oriented marked graphs in R3 if and
only if they are transformed into each other by a finite
sequence of the unoriented/oriented RV4 graph moves
Γ1,Γ

′
1,Γ2,Γ3,Γ4,Γ

′
4 and Γ5:
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Oriented RV4 graph moves

Γ1 :

Γ1 :

< >
Γ2 :

Γ3 :

Γ4 :

Γ4 :

Γ5 :
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Kauffman bracket polynomial
Let K be a knot or link diagram. The Kauffman bracket
polynomial of K is a Laurent polynomial
⟨K⟩= ⟨K⟩(A) ∈ Z[A,A−1] defined by the following rules:

(B1) ⟨⃝⟩= 1,

(B2) ⟨⃝ K′⟩= δ ⟨K′⟩, where δ =−A2 −A−2,

(B3)
〈 〉

= A
〈 〉

+A−1
〈 〉

.

The Kauffman bracket polynomial is a regular isotopy
invariant for unoriented links and〈 〉

=−A3
〈 〉

,
〈 〉

=−A−3
〈 〉

.
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Normalized Kauffman bracket polynomial
Let L be an oriented link diagram and let L̃ be the link
diagram L without orientation. The normalized Kauffman
bracket polynomial ⟨L⟩N of L is defined by

⟨L⟩N = (−A3)−w(L)⟨L̃⟩

The normalized Kauffman bracket polynomial is an invariant
of the oriented link in R3 presented by L, and satisfies the
recursive formula:

(i) ⟨ ∧ ⟩N = 1.

(ii) A4⟨
??__

⟩N −A−4⟨
__ ??

⟩N = (A−2 −A2)⟨ ⌜ ⌝ ⟩N .
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Generalized Kauffman bracket [[ ]] for MG
diagrams

Let D be an unoriented/oriented MG diagram.
Let [[D]] be the polynomial in Z[A,A−1][x,y] defined by the
following two rules:

(L1) [[D]] = ⟨D⟩/⟨D⟩N if D is an unoriented/oriented link diagram,

(L2) [[ ]] = x[[ ]]+ y[[ ]].

[[
⌞

⌝
⌜

⌟ ]] = x[[ ⌜ ⌟ ]]+ y[[ ⌜ ⌟ ]].
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Resolutions of MG diagrams
For an unoriented MG diagram D, let L−(D) and L+(D) be
the oriented link diagrams obtained from D by replacing

each marked vertex with or .

D L
-
(D) L

+
(D)

We call L−(D) and L+(D) the negative resolution and the
positive resolution of D, respectively.
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Self-writhe of MG diagrams
Let D = D1 ∪·· ·∪Dm be an oriented link diagram and let
w(Di) be the usual writhe of the component Di. The
self-writhe sw(D) of D is defined to be the sum

sw(D) =
m

∑
i=1

w(Di).

Let D be an unoriented MG diagram. We choose an
arbitrary orientation for each component of L+(D) and
L−(D). Define the self-writhe sw(D) of D by

sw(D) =
sw(L+(D))+ sw(L−(D))

2
.

where sw(L+(D)) and sw(L−(D)) are independent of the
choice of orientations because the writhe w(Di) is
independent of the choice of orientation for Di.
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Normalization of [[ ]]

Let D be an unoriented MG diagram. Then sw(D) is invariant
under all RV4 graph moves except the unoriented move Γ̃1. For
Γ̃1 and its mirror move,

sw
( )

= sw
( )

+1, sw
( )

= sw
( )

−1.

Definition (Generalized Kauffman bracket polynomial)
Let D be an unoriented/oriented MG diagram. We define ≪ D ≫
/≪ D ≫N to be the polynomial in variables x and y with
coefficients in Z[A,A−1] given by

≪ D ≫= (−A3)−sw(D)[[D]](x,y)/≪ D ≫N= [[D]](x,y).
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State-sum formulas for ≪ ≫ and ≪ ≫N

Let D be an unoriented/oriented marked graph diagram and let
V(D) be the set of all marked vertices. A state of D is a function
σ : V(D)→{+1,−1}, i.e., an assignment of +1 or −1 to each
marked vertex of D. Let S (D) be the set of all states of D. For
σ ∈ S (D), let Dσ denote the link diagram obtained from D by

T∞

−→ ,

T0

−→ ,
⌞

⌝
⌜

⌟
T∞

−→ ⌜
⌟ ,

⌞

⌝
⌜

⌟
T0

−→ ⌜
⌟

Then

≪ D ≫= (−A3)−sw(D)
∑

σ∈S (D)
∏

v∈V(D)

x
1+σ(v)

2 y
1−σ(v)

2 ⟨Dσ ⟩,

≪ D ≫N= (−A3)−w(D)
∑

σ∈S (D)
∏

v∈V(D)

x
1+σ(v)

2 y
1−σ(v)

2 ⟨D̃σ ⟩.
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Polynomial invariant for marked graphs in
3-space
Theorem
Let D be an oriented MG diagram. Then

≪ D ≫N= (−A3)sw(D̃)−w(D) ≪ D̃ ≫ .

Theorem
Let G be an unoriented/oriented marked graph in R3 and let D
be an unoriented/oriented MG diagram presenting G. Then the
polynomial ≪ D ≫/≪ D ≫N is an invariant for
unoriented/oriented RV4 graph moves, and therefore it is an
invariant of G.

Sang Youl Lee (Pusan National U) Invariants for surface-links July 7, 2017 14 / 33



Recursive formula for ≪ D ≫N

Theorem
(1) ≪ ∧ ≫N= 1.

(2) If D and D′ are two equivalent oriented MG diagrams, then
≪ D ≫N=≪ D′ ≫N .

(3) ≪ D⊔ ∧ ≫N= (−A−2 −A2)≪ D≫N .

(4) ≪
⌞

⌝
⌜

⌟ ≫N= x ≪ ⌜
⌟ ≫N +y ≪ ⌜

⌟ ≫N .

(5) A4 ≪
??__

≫N −A−4 ≪
__ ??

≫N=(A−2−A2)≪ ⌜ ⌝ ≫N .

(6) ≪
⌝
⌜

⌝
≫N=

(
y− (A−2 +A2)x

)
≪ ⌜≫N .

(7) ≪
⌝
⌜

⌝
≫N=

(
x− (A−2 +A2)y

)
≪ ⌜≫N .
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Example

≪ ⌝⌟ ⌝⌟≫N= x2 ≪ ⌝⌟ ⌝⌟≫N +xy ≪ ⌝⌟ ⌝⌟≫N +

yx ≪ ⌝⌟ ⌝⌟≫N +y2 ≪ ⌝⌟ ⌝⌟≫N

=
〈 〉

N
(x2 + y2)+ xy

〈
⌝⌟ ⌝⌟

〉
N
+ yx

〈 〉
N

= (−A−2 −A2)(x2 + y2)+(−A10 −A2)(−A−10 −A−2)xy+(−A−2 −A2)2xy

= (−A2 −A−2)(x2 + y2)+(A4 +4+A−4 +A−8 +A8)xy.
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Some properties of ≪ D ≫N

Theorem

(1) ≪ D ≫N=≪−D ≫N .
(2) ≪ D∗ ≫N(A,x,y) =≪ D ≫N(A,y,x).
(3) ≪ D! ≫N(A,x,y) =≪ D ≫N(A−1,x,y).
(4) ≪ D♯D′ ≫N=≪ D ≫N≪ D′ ≫N .
(5) ≪ D⊔D′ ≫N= (−A2 −A−2)≪ D ≫N≪ D′ ≫N .

(6) ≪ D∗D′ ≫N=
(

x2 −2(A2 +A−2)xy+ y2
)
≪ D ≫N≪ D′ ≫N .

> >

<<
D D′

(a) D♯D′

> >

<<
D D′

(b) D∗D′
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Surface-links
A surface-link is a closed surface smoothly embedded in R4

(or in S4).
A connected surface-link is called a surface-knot.
· A 2-sphere-link is sometimes called a 2-link.
· A connected 2-link is called a 2-knot.
Two surface-links L and L ′ in R4 are equivalent if they are
ambient isotopic, i.e.,
∃ orient. pres. homeo. h : R4 → R4 s.t. h(L ) = L ′.

If each component Ki of a surface-link L = K1 ∪·· ·∪Kµ is
oriented, L is called an oriented surface-link. Two oriented
surface-links L and L ′ are equivalent if the restriction
h|L : L → L ′ is also orientation preserving.
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Adm. MG diagram D −→ Surface-link L (D)

Definition
A MG diagram D is admissible if both resolutions L−(D) and
L+(D) are trivial link diagrams.

D

F(D)

L (D)+

L (D)-

L(D)
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Surface-links −→ adm. MG diagrams
Any surface link L in R4 = R3 ×R can be deformed into a
surface link L ′, called a hyperbolic splitting of L , by an ambient
isotopy of R4 in such a way that the projection p : L ′ → R
satisfies the followings:

all critical points are non-degenerate,
all the index 0 critical points (minimal points) are in R3

−1,
all the index 1 critical points (saddle points) are in R3

0,
all the index 2 critical points (maximal points) are in R3

1.
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Surface-links −→ adm. MG diagrams
Then the cross-section L ′

0 = L ′∩R3
0 at t = 0 is a spatial

4-valent regular graph in R3
0. We give a marker at each

4-valent vertex (saddle point) that indicates how the saddle
point opens up above as illustrated in Figure:

When L is an oriented surface-link, we choose an
orientation for each edge of L ′

0 so that it coincides with the
induced orientation on the boundary of L ′∩R3 × (−∞,0] by
the orientation of L ′ inherited from the orientation of L .
The resulting marked graph G := L ′

0 is called an marked
graph presenting L and its diagram D (admissible) is called
a marked graph diagram presenting L .
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Surface-links & Adm. MG diagrams

Theorem (Kearton-Kurlin, Swenton)
Two unoriented/oriented admissible marked graph diagrams
present the same unoriented/oriented surface-link if and only if
they are transformed into each other by a finite sequence of
unoriented/oriented RV4 graph moves (called
unoriented/oriented Yoshikawa moves of type I) and
unoriented/oriented Yoshikawa moves of type II:
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Oriented Yoshikawa moves of type II

⌝
⌜

⌝
//

ooΓ6 :
⌝

⌝
⌜

⌝
//

ooΓ′
6 :

⌝

∧

∧
⌞

⌝

⌝⌟

⌟

//
oo

∧

∧
⌟

⌜

⌜⌞

⌞

Γ7 :

⌜ ⌜

⌜

⌞

⌞

⌞

⌝

⌟

//
oo

⌜ ⌜

⌜

⌞

⌞

⌞

⌝

⌟

Γ8 :
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A specialization of ≪ ≫ and ≪ ≫N

Let

z(t) =
1

2
√

t

(√
3t−1+ i

√
t+1

)
, z(t) =

1
2
√

t

(√
3t−1− i

√
t+1

)
,

where t ̸= 0 and i =
√
−1. Note that z(t) = z(t)−1.

Definition

Let D be an unoriented/oriented marked graph diagram. We
define K(D)/K(D)N by the formula:

K(D) = K(D; t) =≪ D ≫ |A=z(t), A−1=z(t), x=y=t

= (−z(t)3)−sw(D)[[D]](z(t),z(t), t, t).
K(D)N = K(D; t)N =≪ D ≫ |A=z(t), A−1=z(t), x=y=t

= (−z(t)3)−w(D)[[D̃]](z(t),z(t), t, t).
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Recursive rules for K(D)N

Theorem

(1) K( ∧ )N = 1.

(2) If D ≈MG D′, then K(D)N = K(D′)N .

(3) K(D⊔ ∧ )N = (t−1 −1)K(D)N .

(4) K
( ⌞

⌝
⌜

⌟

)
N
= t

[
K
(
⌜

⌟

)
N
+K

(
⌜

⌟

)
N

]
.

(5) λ (t)K
( ??__ )

N
−λ (t)K

( __ ?? )
N
=

2it
√

t+1
√

3t−1 K
(
⌜ ⌝

)
N
, where

λ (t) = (t2 +2t−1)− i(t−1)
√

t+1
√

3t−1.

(6) K
(
⌝
⌜

⌝

)
N
= K

(
⌜
)

N
, K

(
⌝
⌜

⌝

)
N
= K

(
⌜
)

N
.
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Invariants for surface-links
Theorem

Let D be an unoriented/oriented marked graph diagram and let
D′ be an unoriented/oriented marked graph diagram obtained
from D by applying a single unoriented/oriented Yoshikawa
move. Then

K(D′) = K(D)+(2t−1)Ψ(t)/K(D′)N = K(D)N +(2t−1)Ψ(t),

where Ψ(t) ∈ M = Z[2−1, t
1
2 , t−

1
2 ,
√

3t−1, i
√

t+1].

Corollary
Let L be an unoriented/oriented surface-link and let D be an
unorinted/oriented marked graph diagram presenting L . Then
K(D)+< 2t−1 >/ K(D)N+< 2t−1 > is an invariant of L .
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Example
Let 81 be the spun 2-knot of the trefoil knot. Then

≪ ⌝⌟ ⌝⌟

81

≫N= x2 ≪ ⌝⌟ ⌝⌟≫N +xy ≪ ⌝⌟ ⌝⌟≫N +

yx ≪ ⌝⌟ ⌝⌟≫N +y2 ≪ ⌝⌟ ⌝⌟≫N

= (−A−2 −A2)(x2 + y2)+(−A−2 −A2)2xy+

(−A16 +A12 +A4)(−A−16 +A−12 +A−4)xy

= (−A2 −A−2)(x2 + y2)+(5−A12 −A−12 +A8 +A−8)xy.

K(81)N = t−4(6t5 +14t4 −8t3 −8t2 +6t−1) and hence
t−4(6t5 +14t4 −8t3 −8t2 +6t−1)+< 2t−1 > is an invariant of 81.
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Virtual marked graph (VMG) diagrams

>
>>

>
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Equivalence of VMG diagrams
(1) Two oriented VMG diagrams D and D′ are equivalent if they

are transformed into each other by a finite sequence of the
following oriented VMG moves:

• The moves Γ1, . . . ,Γ5,−Γ1 and Γ′
4.

• The moves VΓ1, . . . ,VΓ5, VΓ′
4 and −VΓ′

4 below.
An oriented virtual marked graph is defined to be an
equivalence class of oriented VMG diagrams modulo
oriented VMG moves.

(2) Two VMG diagrams D and D′ are said to be equivalent if
they are transformed into each other by a finite sequence of
the following VMG moves:

• The moves Ω1, . . . ,Ω5 and Ω′
4.

• The moves VΩ1, . . . ,VΩ5 and VΩ′
4, where VΩ′

4 and VΩ5
stand for the move VΓ′

4 and VΓ5 forgetting the orientations.
A virtual marked graph is defined to be an equivalence
class of VMG diagrams modulo VMG moves.
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Oriented VMG moves
⌜

//oo

VΓ1

⌜

⌞
//oo

−VΓ1 ⌞

⌜ ⌝
//oo

VΓ2

⌜ ⌝

⌞
⌟⌝

//oo

VΓ3
⌜

⌝⌟ ⌞
⌟⌝

//oo

VΓ4
⌜

⌝⌟

⌞

⌝
⌜

//oo

VΓ′
4 : ⌝ ⌟

⌟

⌝
⌝

⌟
//oo

−VΓ′
4

⌞ ⌜

⌟

⌞ //oo

VΓ5

⌟
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Virtual surface-links
Oriented generalized Yoshikawa moves:
• The oriented Yoshikawa moves Γ1, . . . ,Γ5,−Γ1 and Γ′

4 of
Type I.

• The oriented virtual marked graph moves VΓ1, . . . ,VΓ5, VΓ′
4

and −VΓ′
4.

• The oriented Yoshikawa moves Γ6,Γ
′
6,Γ7 and Γ8 of type II.

Definition
A virtual surface-link is defined to be an equivalence class of
admissible VMG diagrams modulo generalized Yoshikawa
moves. An oriented virtual surface-link is defined to be an
equivalence class of oriented admissible VMG diagrams modulo
unoriented generalized Yoshikawa moves.
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Invariants for virtual surface-links
Theorem

Let D be an unoriented/oriented VMG diagram and let D′ be an
unoriented/oriented VMG diagram obtained from D by applying
a single generalized unoriented/oriented Yoshikawa move. Then

K(D′) = K(D)+(2t−1)Ψ(t)/K(D′)N = K(D)N +(2t−1)Ψ(t),

where Ψ(t) ∈ M = Z[2−1, t
1
2 , t−

1
2 ,
√

3t−1, i
√

t+1].

Corollary
Let L be an unoriented/oriented virtual surface-link and let D be
an unorinted/oriented VMG diagram presenting L . Then
K(D)+< 2t−1 >/ K(D)N+< 2t−1 > is an invariant of L .
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Thank you!
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